
Heinz Nixdorf Institute

Security Implications Of
Compiler Optimizations On
Cryptography — A Review

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 1

Compiler
Translates high-level abstract instructions to machine level

Three Phase Compiler Architecture
Frontend – Optimizer – Backend
Here: Clang – LLVM – X86

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 2

Compiler
Translates high-level abstract instructions to machine level
Three Phase Compiler Architecture

Frontend – Optimizer – Backend
Here: Clang – LLVM – X86

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 3

Compiler
Translates high-level abstract instructions to machine level
Three Phase Compiler Architecture
Frontend – Optimizer – Backend

Here: Clang – LLVM – X86

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 4

Compiler
Translates high-level abstract instructions to machine level
Three Phase Compiler Architecture
Frontend – Optimizer – Backend
Here: Clang – LLVM – X86

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 5

Compiler optimization
Optimization Levels

Higher levels: longer compile time, but faster run time
Compiler flag: -O1, -O2, -O3

Dead Store Elimination

Removes unused or overwritten memory store operations
Compiler flag: -fdse

Function Inlining

Eliminate function call overhead
Compiler flag: -finline-functions

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 6

Compiler optimization
Optimization Levels

Higher levels: longer compile time, but faster run time
Compiler flag: -O1, -O2, -O3

Dead Store Elimination

Removes unused or overwritten memory store operations
Compiler flag: -fdse

Function Inlining

Eliminate function call overhead
Compiler flag: -finline-functions

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 7

Compiler optimization
Optimization Levels

Higher levels: longer compile time, but faster run time
Compiler flag: -O1, -O2, -O3

Dead Store Elimination

Removes unused or overwritten memory store operations
Compiler flag: -fdse

Function Inlining

Eliminate function call overhead
Compiler flag: -finline-functions

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 8

Compiler optimization
Optimization Levels

Higher levels: longer compile time, but faster run time
Compiler flag: -O1, -O2, -O3

Dead Store Elimination

Removes unused or overwritten memory store operations
Compiler flag: -fdse

Function Inlining

Eliminate function call overhead
Compiler flag: -finline-functions

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 9

Compiler optimization
Optimization Levels

Higher levels: longer compile time, but faster run time
Compiler flag: -O1, -O2, -O3

Dead Store Elimination

Removes unused or overwritten memory store operations
Compiler flag: -fdse

Function Inlining

Eliminate function call overhead
Compiler flag: -finline-functions

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 10

Problem...?

Implicit Requirements

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 11

Problem...?
Implicit Requirements

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 12

Implicit Requirements

Constant-Time Selection

Requirement: Select between two branches based on a
boolean value, in constant time

Generated code might contain jump instruction
Timing attacks: Branch prediction and Pipeline stalling

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 13

Implicit Requirements

Constant-Time Selection

Requirement: Select between two branches based on a
boolean value, in constant time
Generated code might contain jump instruction

Timing attacks: Branch prediction and Pipeline stalling

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 14

Implicit Requirements

Constant-Time Selection

Requirement: Select between two branches based on a
boolean value, in constant time
Generated code might contain jump instruction
Timing attacks: Branch prediction and Pipeline stalling

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 15

Implicit Requirements

Constant-Time Selection
1 i n t c o n d i t i o n a l s e l e c t (bool b , i n t x , i n t y) {
2 i f (b) {
3 r e t u r n x ;
4 }
5 else {
6 r e t u r n y ;
7 }
8 }

Listing 1: C Code

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 16

Implicit Requirements
Constant-Time Selection

1 ; c lang 3 .9 −O3 −m32 −march=i386
2 c o n d i t i o n a l s e l e c t (bool , i n t , i n t) :
3 mov al , byte p t r [esp + 4]
4 t e s t a l , a l
5 jne .LBB0 1 ; <−−− JUMP
6 lea eax , [esp + 12]
7 mov eax , dword p t r [eax]
8 r e t
9

10 .LBB0 1 :
11 lea eax , [esp + 8]
12 mov eax , dword p t r [eax]
13 r e t

Listing 2: Assembly Code
Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 17

Implicit Requirements

Secret Erasure

Requirement: Erasing sensitive keys from memory after
use

Common technique to reset memory: memset
Dead store elimination will optimize useless* calls to
memset

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 18

Implicit Requirements

Secret Erasure

Requirement: Erasing sensitive keys from memory after
use
Common technique to reset memory: memset

Dead store elimination will optimize useless* calls to
memset

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 19

Implicit Requirements

Secret Erasure

Requirement: Erasing sensitive keys from memory after
use
Common technique to reset memory: memset
Dead store elimination will optimize useless* calls to
memset

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 20

Implicit Requirements

Secret Erasure
1 i n t dummy(i n t x) {
2 i n t y = x +1;
3 r e t u r n y ;
4 }
5

6 i n t s e c r e t f u n c t i o n () {
7 i n t key = 0xDEADBEEF;
8 i n t y = dummy(key) ;
9 key = 0x00 ;

10 r e t u r n y ;
11 }

Listing 3: C Code

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 21

Implicit Requirements
Secret Erasure

1 ; c lang 3 .9 −O1 −m32 −march=i386
2

3 dummy(i n t) :
4 mov eax , dword p t r [esp + 4]
5 i nc eax
6 r e t
7

8 s e c r e t f u n c t i o n () :
9 sub esp , 12

10 mov dword p t r [esp] , −559038737
11 c a l l dummy(i n t)
12 add esp , 12 ; <−−−− Missing mov 0 (Optimized)
13 r e t

Listing 4: Assembly Code
Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 22

But,
What are the developers doing?

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 23

Controlling the side-effects

1. Custom Functions For Constant-Time Selection
2. Custom Functions For Stack Erasure
3. Disabling Optimization

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 24

Controlling the side-effects

1. Custom Functions For Constant-Time Selection

2. Custom Functions For Stack Erasure
3. Disabling Optimization

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 25

Controlling the side-effects

1. Custom Functions For Constant-Time Selection
2. Custom Functions For Stack Erasure

3. Disabling Optimization

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 26

Controlling the side-effects

1. Custom Functions For Constant-Time Selection
2. Custom Functions For Stack Erasure
3. Disabling Optimization

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 27

Case Studies

[Bearssl, Monocypher, Libsodium, Crypto++, Libgcrypt ..]

Secure memory erasure

Different techniques to reach common goal
OpenSSL: Inline assembly to avoid optimization
Some projects use Platform provided functions

Constant Time Selection

Same situation
Custom functions to implement constant time selection

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 28

Case Studies

[Bearssl, Monocypher, Libsodium, Crypto++, Libgcrypt ..]

Secure memory erasure

Different techniques to reach common goal
OpenSSL: Inline assembly to avoid optimization
Some projects use Platform provided functions

Constant Time Selection

Same situation
Custom functions to implement constant time selection

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 29

Case Studies
[Bearssl, Monocypher, Libsodium, Crypto++, Libgcrypt ..]

Secure memory erasure

Different techniques to reach common goal
OpenSSL: Inline assembly to avoid optimization
Some projects use Platform provided functions

Constant Time Selection

Same situation
Custom functions to implement constant time selection

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 30

Case Studies

[Bearssl, Monocypher, Libsodium, Crypto++, Libgcrypt ..]

Secure memory erasure

Different techniques to reach common goal
OpenSSL: Inline assembly to avoid optimization
Some projects use Platform provided functions

Constant Time Selection

Same situation
Custom functions to implement constant time selection

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 31

What now?

Add Compiler Support

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 32

What now?
Add Compiler Support

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 33

Clang/LLVM Solutions

Implementation - Constant-Time Selection

builtin ct choose(bool condition, Type x, Type y)

Authors implement a built-in function in the Clang/LLVM
framework
x86 64 backend: Compiled into a CMOV operation
For other backends: Compiled to XOR

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 34

Clang/LLVM Solutions

Implementation - Constant-Time Selection

builtin ct choose(bool condition, Type x, Type y)

Authors implement a built-in function in the Clang/LLVM
framework

x86 64 backend: Compiled into a CMOV operation
For other backends: Compiled to XOR

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 35

Clang/LLVM Solutions

Implementation - Constant-Time Selection

builtin ct choose(bool condition, Type x, Type y)

Authors implement a built-in function in the Clang/LLVM
framework
x86 64 backend: Compiled into a CMOV operation

For other backends: Compiled to XOR

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 36

Clang/LLVM Solutions

Implementation - Constant-Time Selection

builtin ct choose(bool condition, Type x, Type y)

Authors implement a built-in function in the Clang/LLVM
framework
x86 64 backend: Compiled into a CMOV operation
For other backends: Compiled to XOR

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 37

Clang/LLVM Solutions

Evaluation - Constant-Time Selection

Authors verified the OpenSSL and mbedTLS
Empirical verification - “Dudect” tool
Overhead:

Two implementations compared (100x)
OpenSSL’s elliptic curve - 1% overhead
Custom RSA implementation - 4% Faster

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 38

Clang/LLVM Solutions

Evaluation - Constant-Time Selection

Authors verified the OpenSSL and mbedTLS

Empirical verification - “Dudect” tool
Overhead:

Two implementations compared (100x)
OpenSSL’s elliptic curve - 1% overhead
Custom RSA implementation - 4% Faster

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 39

Clang/LLVM Solutions

Evaluation - Constant-Time Selection

Authors verified the OpenSSL and mbedTLS
Empirical verification - “Dudect” tool

Overhead:
Two implementations compared (100x)
OpenSSL’s elliptic curve - 1% overhead
Custom RSA implementation - 4% Faster

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 40

Clang/LLVM Solutions

Evaluation - Constant-Time Selection

Authors verified the OpenSSL and mbedTLS
Empirical verification - “Dudect” tool
Overhead:

Two implementations compared (100x)

OpenSSL’s elliptic curve - 1% overhead
Custom RSA implementation - 4% Faster

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 41

Clang/LLVM Solutions

Evaluation - Constant-Time Selection

Authors verified the OpenSSL and mbedTLS
Empirical verification - “Dudect” tool
Overhead:

Two implementations compared (100x)
OpenSSL’s elliptic curve - 1% overhead
Custom RSA implementation - 4% Faster

[Simon et al. 2018]

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 42

Clang/LLVM Solutions

Secret Erasure

1. Function-Based Solution
Performs stack erasure for every sensitive function and its
callees.

2. Stack-Based Solution
Callees only keep track of stack usage and the sensitive
function does the erasure, only once.

3. Call-Graph Based Solution
The call graph is used to determine the maximum stack
usage of a sensitive function at compilation time.

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 43

Clang/LLVM Solutions

Secret Erasure

1. Function-Based Solution
Performs stack erasure for every sensitive function and its
callees.

2. Stack-Based Solution
Callees only keep track of stack usage and the sensitive
function does the erasure, only once.

3. Call-Graph Based Solution
The call graph is used to determine the maximum stack
usage of a sensitive function at compilation time.

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 44

Clang/LLVM Solutions

Secret Erasure

1. Function-Based Solution
Performs stack erasure for every sensitive function and its
callees.

2. Stack-Based Solution
Callees only keep track of stack usage and the sensitive
function does the erasure, only once.

3. Call-Graph Based Solution
The call graph is used to determine the maximum stack
usage of a sensitive function at compilation time.

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 45

Clang/LLVM Solutions

Secret Erasure

1. Function-Based Solution
Performs stack erasure for every sensitive function and its
callees.

2. Stack-Based Solution
Callees only keep track of stack usage and the sensitive
function does the erasure, only once.

3. Call-Graph Based Solution
The call graph is used to determine the maximum stack
usage of a sensitive function at compilation time.

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 46

Clang/LLVM Solutions

Secret Erasure - Evaluation

Benchmark using MiBench (30x)
Function Based - 1.9 - 3.3x slower
Stack Based - 1 - 2x slower
Call Graph Based - Negligible

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 47

Clang/LLVM Solutions

Secret Erasure - Evaluation

Benchmark using MiBench (30x)

Function Based - 1.9 - 3.3x slower
Stack Based - 1 - 2x slower
Call Graph Based - Negligible

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 48

Clang/LLVM Solutions

Secret Erasure - Evaluation

Benchmark using MiBench (30x)
Function Based - 1.9 - 3.3x slower

Stack Based - 1 - 2x slower
Call Graph Based - Negligible

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 49

Clang/LLVM Solutions

Secret Erasure - Evaluation

Benchmark using MiBench (30x)
Function Based - 1.9 - 3.3x slower
Stack Based - 1 - 2x slower

Call Graph Based - Negligible

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 50

Clang/LLVM Solutions

Secret Erasure - Evaluation

Benchmark using MiBench (30x)
Function Based - 1.9 - 3.3x slower
Stack Based - 1 - 2x slower
Call Graph Based - Negligible

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 51

Future Work and Conclusion
Compilers should protect implicit requirements

Need mechanisms to convey assumptions
Constructive, not destructive interference between
Compiler Developers and Security Engineers

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 52

Future Work and Conclusion
Compilers should protect implicit requirements
Need mechanisms to convey assumptions

Constructive, not destructive interference between
Compiler Developers and Security Engineers

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 53

Future Work and Conclusion
Compilers should protect implicit requirements
Need mechanisms to convey assumptions
Constructive, not destructive interference between
Compiler Developers and Security Engineers

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 54

References

Simon, Laurent and Chisnall, David and Anderson, Ross (2018)
What You Get Is What You C: Controlling Side Effects in Mainstream C
Compilers
2018 IEEE European Symposium on Security and Privacy (EuroS&P)

Yang, Zhaomo and Johannesmeyer, Brian and Olesen, Anders Trier and
Lerner, Sorin and Levchenko, Kirill (2017)
Dead Store Elimination (Still) Considered Harmful
2017

Images
http://www.webexhibits.org/causesofcolor/15E.html

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 55

Secret Erasure

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 56

Branch Prediction

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 57

CMOV
Reinitialize ECX to 0

1

2 XOR EBX, EBX ; Clear r e g i s t e r f o r l a t e r
3 ADD ECX, [SMALL COUNT] ; Ad jus ts by some counter value
4 JNC Continue ; I f ECX didn ’ t over f low , cont inue
5 MOV ECX, EBX ; R e i n i t i a l i z e ECX i f i t over f lowed
6 Continue :
7

8 ; Using CMOV:
9

10 XOR EBX, EBX ; Clear r e g i s t e r f o r l a t e r
11 ADD ECX, [SMALL COUNT] ; Ad jus ts by some counter value
12 CMOVC ECX,EBX ; I f ECX overf lowed , r e i n i t i a l i z e to EBX

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 58

	Introduction
	Expectation
	Approach
	Case Studies
	Implementation and Evaluation
	Future Work and Conclusion

