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Compiler
Translates high-level abstract instructions to machine level

Three Phase Compiler Architecture
Frontend – Optimizer – Backend
Here: Clang – LLVM – X86
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Compiler optimization
Optimization Levels

Higher levels: longer compile time, but faster run time
Compiler flag: -O1, -O2, -O3

Dead Store Elimination

Removes unused or overwritten memory store operations
Compiler flag: -fdse

Function Inlining

Eliminate function call overhead
Compiler flag: -finline-functions
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Problem...?

Implicit Requirements
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Implicit Requirements

Constant-Time Selection

Requirement: Select between two branches based on a
boolean value, in constant time

Generated code might contain jump instruction
Timing attacks: Branch prediction and Pipeline stalling
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Implicit Requirements

Constant-Time Selection
1 i n t c o n d i t i o n a l s e l e c t ( bool b , i n t x , i n t y ) {
2 i f ( b ) {
3 r e t u r n x ;
4 }
5 else {
6 r e t u r n y ;
7 }
8 }

Listing 1: C Code
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Implicit Requirements
Constant-Time Selection

1 ; c lang 3 .9 −O3 −m32 −march=i386
2 c o n d i t i o n a l s e l e c t ( bool , i n t , i n t ) :
3 mov al , byte p t r [ esp + 4]
4 t e s t a l , a l
5 jne .LBB0 1 ; <−−− JUMP
6 lea eax , [ esp + 12]
7 mov eax , dword p t r [ eax ]
8 r e t
9

10 .LBB0 1 :
11 lea eax , [ esp + 8]
12 mov eax , dword p t r [ eax ]
13 r e t

Listing 2: Assembly Code
Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 17



Implicit Requirements

Secret Erasure

Requirement: Erasing sensitive keys from memory after
use

Common technique to reset memory: memset
Dead store elimination will optimize useless* calls to
memset
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Implicit Requirements

Secret Erasure
1 i n t dummy( i n t x ) {
2 i n t y = x +1;
3 r e t u r n y ;
4 }
5

6 i n t s e c r e t f u n c t i o n ( ) {
7 i n t key = 0xDEADBEEF;
8 i n t y = dummy( key ) ;
9 key = 0x00 ;

10 r e t u r n y ;
11 }

Listing 3: C Code
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Implicit Requirements
Secret Erasure

1 ; c lang 3 .9 −O1 −m32 −march=i386
2

3 dummy( i n t ) :
4 mov eax , dword p t r [ esp + 4]
5 i nc eax
6 r e t
7

8 s e c r e t f u n c t i o n ( ) :
9 sub esp , 12

10 mov dword p t r [ esp ] , −559038737
11 c a l l dummy( i n t )
12 add esp , 12 ; <−−−− Missing mov 0 ( Optimized )
13 r e t

Listing 4: Assembly Code
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But,
What are the developers doing?
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Controlling the side-effects

1. Custom Functions For Constant-Time Selection
2. Custom Functions For Stack Erasure
3. Disabling Optimization
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Case Studies

[Bearssl, Monocypher, Libsodium, Crypto++, Libgcrypt ..]

Secure memory erasure

Different techniques to reach common goal
OpenSSL: Inline assembly to avoid optimization
Some projects use Platform provided functions

Constant Time Selection

Same situation
Custom functions to implement constant time selection
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What now?

Add Compiler Support
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Clang/LLVM Solutions

Implementation - Constant-Time Selection

builtin ct choose(bool condition, Type x, Type y)

Authors implement a built-in function in the Clang/LLVM
framework
x86 64 backend: Compiled into a CMOV operation
For other backends: Compiled to XOR

[Simon et al. 2018]
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Clang/LLVM Solutions

Evaluation - Constant-Time Selection

Authors verified the OpenSSL and mbedTLS
Empirical verification - “Dudect” tool
Overhead:

Two implementations compared (100x)
OpenSSL’s elliptic curve - 1% overhead
Custom RSA implementation - 4% Faster

[Simon et al. 2018]
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Clang/LLVM Solutions

Secret Erasure

1. Function-Based Solution
Performs stack erasure for every sensitive function and its
callees.

2. Stack-Based Solution
Callees only keep track of stack usage and the sensitive
function does the erasure, only once.

3. Call-Graph Based Solution
The call graph is used to determine the maximum stack
usage of a sensitive function at compilation time.
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Clang/LLVM Solutions

Secret Erasure - Evaluation

Benchmark using MiBench (30x)
Function Based - 1.9 - 3.3x slower
Stack Based - 1 - 2x slower
Call Graph Based - Negligible
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Future Work and Conclusion
Compilers should protect implicit requirements

Need mechanisms to convey assumptions
Constructive, not destructive interference between
Compiler Developers and Security Engineers
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Secret Erasure

Ashwin Prasad Shivarpatna Venkatesh Heinz Nixdorf Institute 56



Branch Prediction
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CMOV
Reinitialize ECX to 0

1

2 XOR EBX, EBX ; Clear r e g i s t e r f o r l a t e r
3 ADD ECX, [SMALL COUNT] ; Ad jus ts by some counter value
4 JNC Continue ; I f ECX didn ’ t over f low , cont inue
5 MOV ECX, EBX ; R e i n i t i a l i z e ECX i f i t over f lowed
6 Continue :
7

8 ; Using CMOV:
9

10 XOR EBX, EBX ; Clear r e g i s t e r f o r l a t e r
11 ADD ECX, [SMALL COUNT] ; Ad jus ts by some counter value
12 CMOVC ECX,EBX ; I f ECX overf lowed , r e i n i t i a l i z e to EBX
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