

IT - Security Group — UPB

Website Fingerprinting Defense: Walkie Talkie — A Review

Overview

- Definition
- 2 Attacker Model
- 3 Exploitable Features
- 4 Attacks
- Defenses
- 6 Walkie Talkie
- 7 Walkie Talkie Evaluation
- 8 Future Work and conclusion

o Internet users want to protect their privacy

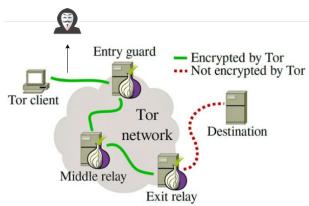
- o Internet users want to protect their privacy
- Technologies: VPNs, Tor Encrypt Traffic

- Internet users want to protect their privacy
- o Technologies: VPNs, Tor Encrypt Traffic
- o But, what about a local observer?

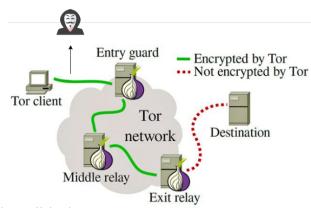
- Internet users want to protect their privacy
- o Technologies: VPNs, Tor Encrypt Traffic
- o But, what about a local observer?
 - o Can see packet sequence


- Internet users want to protect their privacy
- Technologies: VPNs, Tor Encrypt Traffic
- o But, what about a local observer?
 - o Can see packet sequence
 - o Find patterns to expose activity

- Internet users want to protect their privacy
- Technologies: VPNs, Tor Encrypt Traffic
- o But, what about a local observer?
 - o Can see packet sequence
 - Find patterns to expose activity
 - Website Fingerprinting!


Tor Network

Attacker Model


o Local, Passive Attacker

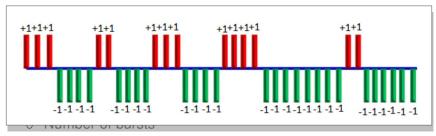
Attacker Model

- o Local, Passive Attacker
- o ISP, Network administrator, Hacker...

Exactly what features are used for website fingerprinting?

o Total transmission time, size

- o Total transmission time, size
- Number of packets or cells
 - o Cell Tor sends data in fixed-size (512-byte) packets



- o Total transmission time, size
- Number of packets or cells
 - o Cell Tor sends data in fixed-size (512-byte) packets
- Direction of cells
 - incoming and outgoing cells

- o Total transmission time, size
- Number of packets or cells
 - Cell Tor sends data in fixed-size (512-byte) packets
- Direction of cells
 - incoming and outgoing cells
- Number of bursts
 - Burst Number of cells in the same direction

Burst – Number of cells in the same direction

How does WF attacks work?

How does WF attacks work?

Machine learning — Classification of features

k-NN Classifier — [Wang et al.]

o Simple supervised learning algorithm

k-NN Classifier — [Wang et al.]

- o Simple supervised learning algorithm
- Training by learning distance between points
- Non-trivial distance function

k-NN Classifier — [Wang et al.]

- Simple supervised learning algorithm
- Training by learning distance between points
- Non-trivial distance function
- o Features: Total size, time, packet ordering, bursts...

k-NN Classifier — [Wang et al.]

- Simple supervised learning algorithm
- Training by learning distance between points
- Non-trivial distance function
- Features: Total size, time, packet ordering, bursts...

Deep Fingerprinting — [Sirinam et al.]

Convolutional Neural Network

k-NN Classifier — [Wang et al.]

- Simple supervised learning algorithm
- Training by learning distance between points
- Non-trivial distance function
- o Features: Total size, time, packet ordering, bursts...

Deep Fingerprinting — [Sirinam et al.]

- Convolutional Neural Network
- Automatically detects important features
- Hyperparameter Tuning: adjusting trade-off

So, how to defend against WF attacks?

So, how to defend against WF attacks?

Traffic Manipulation — Mask unique features

- o Tamaraw [Cai et al.]
- o Supersequence [Wang et al.]
- o WTF-PAD [Juarez et al.]
- 0 ...

- o Tamaraw [Cai et al.]
- o Supersequence [Wang et al.]
- o WTF-PAD [Juarez et al.]
- 0 ...

Walkie-Talkie — [Wang and Goldberg]

Universal, provable, light weight WF defense

- o Tamaraw [Cai et al.]
- o Supersequence [Wang et al.]
- o WTF-PAD [Juarez et al.]
- 0 ...

Walkie-Talkie — [Wang and Goldberg]

- o Universal, provable, light weight WF defense
- o Half-duplex communication

- o Tamaraw [Cai et al.]
- o Supersequence [Wang et al.]
- o WTF-PAD [Juarez et al.]
- 0 ...

Walkie-Talkie — [Wang and Goldberg]

- o Universal, provable, light weight WF defense
- Half-duplex communication
- Burst molding

- o Tamaraw [Cai et al.]
- Supersequence [Wang et al.]
- o WTF-PAD [Juarez et al.]
- 0 ...

Walkie-Talkie — [Wang and Goldberg]

- o Universal, provable, light weight WF defense
- Half-duplex communication
- Burst molding
- o 50% max attacker accuracy

1. Request google.com -->

- 1. Request google.com -->
- 2. < -- Start receiving google.com

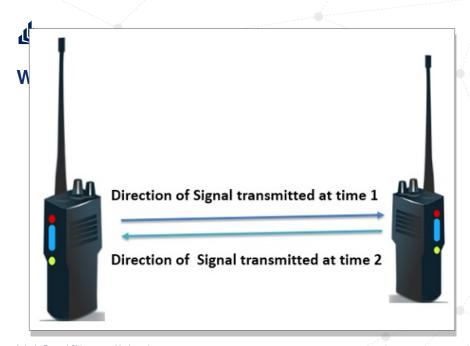
- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg

- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg
- 4. Request logo.jpg −− >

- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg
- 4. Request logo.jpg -->
- 5. Browser notices google.com has icon.png

- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg
- 4. Request logo.jpg −− >
- 5. Browser notices google.com has icon.png
- 6. Request icon.png -->

- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg
- 4. Request logo.jpg −− >
- 5. Browser notices google.com has icon.png
- 6. Request icon.png -->
- 7. ...



- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg
- 4. Request logo.jpg −− >
- 5. Browser notices google.com has icon.png
- 6. Request icon.png -->
- 7. ...

- 1. Request google.com -->
- 2. < -- Start receiving google.com
- 3. Browser notices google.com has logo.jpg
- 4. Request logo.jpg -->
- 5. Browser notices google.com has icon.png
- 6. Request icon.png -->
- 7. ...

Notice that 4, 6 happens while other requests are still not finished

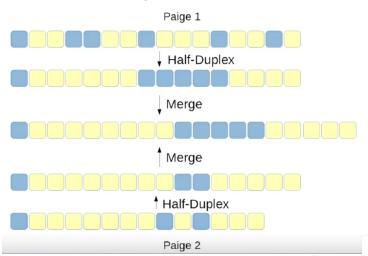
1. Request google.com -->

- 1. Request google.com -->
- 2. < -- Finish receiving google.com

- 1. Request google.com -->
- 2. < -- Finish receiving google.com
- 3. Browser notices google.com has logo.jpg, icon.png ...

- 1. Request google.com -->
- 2. < -- Finish receiving google.com
- 3. Browser notices google.com has logo.jpg, icon.png ...
- 4. Request logo.jpg, icon.png -->

- 1. Request google.com -->
- 2. < -- Finish receiving google.com
- 3. Browser notices google.com has logo.jpg, icon.png ...
- 4. Request logo.jpg, icon.png -->
- 5. < -- Finish receiving logo.jpg, icon.png


- 1. Request google.com -->
- 2. < -- Finish receiving google.com
- 3. Browser notices google.com has logo.jpg, icon.png ...
- 4. Request logo.jpg, icon.png -->
- 5. < -- Finish receiving logo.jpg, icon.png
- 6. ...

In Full-Duplex (originally): In Half-Duplex (Walkie-Talkie): Request Resources of Page Request Page Page Resources of Page

W-T — Burst Molding

W-T — Implementation

 Authors implement half-duplex on top of Tor Browser (Firefox)

W-T — Implementation

- Authors implement half-duplex on top of Tor Browser (Firefox)
- o Client and Entry node/proxy together do burst molding

W-T — Implementation

- Authors implement half-duplex on top of Tor Browser (Firefox)
- o Client and Entry node/proxy together do burst molding
- o Burst sequences are to be known before hand

What is the Attacker Accuracy? Overhead?

Evaluation — W-T vs Attacks

Attack	Undefended	Defended	
Jaccard [15]	0.01	0.01	
Naive Bayes [15]	0.49	0.16	
MNBayes [13]	0.03	0.02	
SVM [23]	0.81	0.44	
DLevenshtein [6]	0.94	0.19	
OSAD [32]	0.97	0.25	
FLevenshtein [32]	0.79	0.24	
kNN [31]	0.95	0.28	
CUMUL [22]	0.64	0.20	
kFP [12]	0.86	0.41	

[Walkie Talkie — Wang and Goldberg]

Evaluation — W-T vs Deep Fingerprinting

Defenses	Overhead		Accuracy of WF attacks on defended datasets					
	Bandwidth	Latency	SDAE	DF	AWF	k-NN	CUMUL	k - FP
BuFLO	246%	137%	9.2%	12.6%	11.7%	10.4%	13.5%	13.1%
Tamaraw	328%	242%	11.8%	11.8%	12.9%	9.7%	16.8%	11.0%
WTF-PAD	64%	0%	36.9%	90.7%	60.8%	16.0%	60.3%	69.0%
Walkie-Talkie	31%	34%	23.1%	49.7%	45.8%	20.2%	38.4%	7.0%

DF - Deep Fingerprinting

[Deep Fingerprinting — Sirinam et al.]

W-T — Evaluation vs Defenses

Defense	BWOH	ТОН	kNN acc.
Adaptive [29]	193%	16%	0.67
Decoy [23]	100%	39%	0.25
BuFLO [8]	145%	180%	0.08
Supersequence [31]	222%	112%	0.05
Tamaraw [5]	103%	140%	0.05
WT (this work)	31%	34%	0.28

BWOH - Bandwidth Overhead, **TOH** - Time Overhead [Walkie Talkie — Wang and Goldberg]

 Website fingerprinting is still an open problem for users who are privacy concerned

- Website fingerprinting is still an open problem for users who are privacy concerned
- Walkie-Talkie is a low overhead solution that can defend against all WF attacks

- Website fingerprinting is still an open problem for users who are privacy concerned
- Walkie-Talkie is a low overhead solution that can defend against all WF attacks
- o Still unbroken by recent attacks

- Website fingerprinting is still an open problem for users who are privacy concerned
- Walkie-Talkie is a low overhead solution that can defend against all WF attacks
- Still unbroken by recent attacks
- Good candidate to be adopted by Tor